1.3. Современные движения поверхности Земли Российского сегмента побережья Черного моря по данным GPS-наблюдений

Е.А. Глазырин, В.Л. Шестопалов

Для изучения современных движений поверхности Земли в последнее время все шире используются новейшие технологии спутниковой геодинамики. Для Черноморского региона на основе ежегодных GPS-измерений основные параме-тры движений блоков литосферы были получены в рамках реализации междуна-родных проектов [Tari et al., 2000; McClusk et al., 2000].

Основой для характеристики современных движений поверхности Земли в прибрежно-шельфовой зоне Российского сектора Черного моря служит сеть спутниковых геодинамических пунктов (СГП), развернутая АО «Южморгеология» при участии Южного научного центра Академии наук (ЮНЦ РАН) и Кубанского государственного университета (КубГУ), а также данные междуна-родной GPS-станции в Крыму (СRAO) в Симеизе (рис. 1.3.1).

В тектоническом плане СГП характеризуют движение различных участков: Горного Крыма (СГП Крым), Керченско-Таманского Тамань), периклинального прогиба (СГП покровно-складчатой зоны Северо-Западного Кавказа (СГП Анапа и СГП Геленджик – Новороссийско-Лазаревская зона, СГП Эсто-Садок – Краснополянская зона) и Закавказской плиты (СГП Сочи и СГП Лесное – Гагрско-Джавская зона прерывистой складчатости, СГП Адлер – сухопутное продолжение Туапсинского прогиба – Адлерская депрессия).

СГП оснащены приемной аппаратурой GPS и высокоточными антеннами, установленными на стабильных спецоснованиях, согласно стандартам международной геодинамической службы IGS (International GNSS Service).

Данные суточных измерений с периодом 30 с дают возможность после обработки получить местоположение фазового центра приемной антенны GPS с миллиметровой точностью на расстояниях до 2000 км от опорных станций IGS.

Рис. 1.3.1. Схема расположения спутниковых геодинамических пунктов на Российском сегменте побережья Черного моря.

Цифры на схеме – спутниковые геодинамические пункты: 1 – Крым (CRAO); 2 – Тамань; 3 – Анапа; 4 – Геленджик; 5 – Сочи; 6 – Лесное; 7 – Эсто-Садок; 8 – Адлер.

На основе длительного ряда определений местоположения вычисляются компоненты вектора скорости V_E (скорость в восточном направлении), V_N (скорость в северном направлении), V_h (вертикальная скорость) и азимут движения участка поверхности Земли (литосферы).

Измерения выполнены аппаратурой GPS/ГЛОНАСС с дальнейшей обработкой программой GAMIT/GLOBK, разработанной в Массачусетском технологическом институте и Институте океанографии им. Скриппса [Herring et al., 2015]. Движения вычисляются в международной координатной системе ITRF2014. В результате для каждого СГП получены параметры движения, характеризующие современные движения поверхности Земли на протяжении последних 3,3–6,3 лет, по мере ввода пунктов в эксплуатацию (табл. 1.3.1, рис. 1.3.2–1.3.7). Представляемые данные уточняют и дополняют ранее опубликованные [Бабешко и др., 2016; Глазырин и др., 2017] измерения. Вычисленные компоненты движений международной станции в Крыму (CRAO) хорошо согласуются с ранее полученными по [Штирберг и др., 2002].

Для определения индивидуальных особенностей движения каждого СГП в качестве опорного регионального вектора могут быть использованы параметры движения международной станции ZECK (Зеленчукская, Северный Кавказ), которые составляют [Бабешко и др., 2016]: $V_E = +25,38$ мм/год, $V_N = +11,66$ мм/год, $V_h = +1,27$ мм/год. Согласно полученным данным, движение всех пунктов включает

Таблица 1.3.1

Скорости движений СГП в системе ITRF2008

СГП	Компоненты вектора скорости, мм/год			Вектор скорости,	Азимут,	Период наблюдения к
	V _E	V _N	V _h	мм/год	градусы	2018 г., годы
Крым	24,58±0,02	12,72±0,02	$-0,23\pm0,03$	27,68±0,02	+62,64	6,29
Тамань	28,80±0,04	07,68±0,05	$+9,9\pm0,08$	$29,80{\pm}0,05$	+75,07	4,00
Анапа	26,65±0,05	$18,58\pm0,07$	$-3,29\pm0,9$	32,48±0,07	+55,11	3,34
Геленджик	24,65±0,03	11,12±0,03	$-1,83\pm0,05$	$27,04{\pm}0,03$	+65,72	5,27
Сочи	24,06±0,08	14,09±0,08	-3,30±0,13	$27,88\pm0,08$	+59,64	6,27
Лесное	24,26±0,02	12,62±0,03	$+1,7\pm0,08$	27,34±0,03	+62,52	5,64
Эсто-Садок	24,83±0,02	12,23±0,04	$+2,24\pm0,1$	27,68±0,04	+63,78	6,29
Адлер	25,48±0,03	15,30±0,04	$-0,66\pm0,04$	29,72±0,04	+58,83	4,34

Рис. 1.3.2. Графики движения СГП Крым в горизонтальном плане и по вертикали с 01.01.2012 г. по 17.04.2018 г.

1 – исходная (посуточная) траектория движения в горизонтальном плане; 2 – исходная (посуточная) траектория движения по вертикали; 3 – сглаженная траектория движения; 4 – тренд движения.

общий тренд в направлении северо-восток и согласуется с движением международных пунктов в Крыму (CRAO) и Зеленчукской (ZECK).

Поверхность Земли на участке СГП Крым (CRAO) за период наблюдений в 6,29 лет с 01.01.2012 г. по 17.04.2018 г. движется в горизонтальной плоскости согласно станции ZECK, но при этом испытывает весьма незначительное погружение со скоростью 0,23 мм/год (см. рис. 1.3.2).

Участок СГП Тамань за последние 4 года с 19.03.2014 г. по 20.03.2018 г. движется преимущественно в восточном направлении и испытывает воздымание со

Рис. 1.3.4. Графики движения СГП Анапа в горизонтальном плане и по вертикали с 22.10.2014 г. по 25.02.2018 г.

скоростью 9,9 мм/год (см. рис. 1.3.3), чем заметно отличается от других участков. СГП расположен в пределах влияния Кизилташской антиклинали, которая по геоморфологическим признакам и данным спутниковой интерферометрии испытывает рост.

Территория СГП Анапа в последние 3,34 года с 22.10.2014 г. по 25.02.2018 г. обладает относительно других СГП максимальным вектором скорости и испытывает заметное опускание со скоростью 3,29 мм/год (см. рис. 1.3.4). Это подтверждает ранее определенную [Лилиенберг, Ященко, 1991] современную тенденцию к опусканию побережья Новороссийской ступени ~2 мм/год.

Рис. 1.3.5. Графики движения СГП Геленджик в горизонтальном плане и по вертикали с 21.11.2012 г. по 01.03.2018 г.

Поверхность Земли на участке СГП Геленджик за период наблюдений в 5,27 лет с 21.11.2012 г. по 01.03.2018 г. движется в горизонтальной плоскости согласно с международными станциями ZECK и CRAO и испытывает погружение со скоростью 1,83 мм/год (см. рис. 1.3.5).

СГП Сочи в последние 6,27 лет с 01.01.2012 г. по 12.04.2018 г. также испытывает смещение в северо-восточном направлении. Тренд вертикальных движений пункта за период наблюдений имеет характер устойчивого опускания и облада-

Рис. 1.3.6. Графики движения СГП Сочи в горизонтальном плане и по вертикали с 01.01.2012 г. по 12.04.2018 г.

ет максимальной скоростью погружения среди рассматриваемых, составляя 3,30 мм/год (см. рис. 1.3.6). СГП Сочи отличается среди других пунктов наиболее значительными вариациями движений, особенно в горизонтальной плоскости. Средняя амплитуда колебаний относительно нисходящего вертикального тренда этого пункта составила 10–15 мм.

Побережье на участке СГП Адлер за период в 4,34 года с 29.12.2013 г. по 01.05.2018 г. движется в северо-восточном направлении с несколько большей ско-

ростью, чем опорные ZECK и CRAO, с относительно небольшим опусканием в 0,66 мм/год (см. рис. 1.3.7).

Рассмотрение скоростей движений земной коры юго-восточного фрагмента сети, включающего СГП Адлер, Сочи, Лесное и Эсто-Садок (см. табл. 1.3.1), показывает их градиентный характер на отрезке берег Черного моря – горная часть Большого Кавказа. В частности, в осевой части Большого Кавказа территория испытывает поднятие, а в Черноморской впадине – опускание с градиентом порядка 5,54 мм/год. Такая дифференциация вертикальных движений в поперечном плане относительно береговой линии согласуется с представлениями о погружении Восточно-Черноморской впадины с вовлечением примыкающей Гагрско-Джавской зоны прерывистой складчатости и Адлерской депрессия Туапсинского прогиба, с одновременным воздыманием складчато-глыбового сооружения Большого Кавказа. Также от Черноморского побережья к осевой части Большого Кавказа заметно уменьшается северная компонента вектора скорости с 15,30 мм/год (СГП Адлер) до 12,23 мм/год (СГП Эсто-Садок), что, вероятно, отражает процесс пододвигания северо-восточного борта Черноморской впадины под складчато-глыбовые сооружения Большого Кавказа или сжатие зоны их сочленения под влиянием северного дрейфа Аравийской плиты.

Движения каждого СГП на фоне общего тренда характеризуются индивидульными волновыми флуктациями различной периодичности и амплитуды как в горизонтальной плоскости, так и по вертикали (см. рис. 1.3.2–1.3.7). Волновой характер этих флуктуаций служит проявлением геодинамических аномалий, а также, вероятно, частично отражает остаточные регулярные сезонные явления в геофизической среде (приливно-отливные процессы, ионосферные явления и др.) после их компенсации математическими моделями в программе GAMIT. Аномальные отклонения от тренда движений нередко сопровождаются сейсмическими событиями с возвращением движения к прежнему тренду.