

Особенности численного решения кинетического уравнения для гравитационных волн на воде

В.Г. Полников, ИФА им. А.М. Обухова РАН, г. Москва, polnikov@mail.ru

Цель расчетов не число, а понимание. Р.В Хемминг.

(Численные методы для научных работников и инженеров, 1968)

Содержание

- 1. Историческая справка
- 2. Постановка задачи. Метод решения
- 3. Асимптотики НЛ-переноса

на первом шаге счета КУ

- 4. Форма спектров решений КУ
- 5. Асимптотики НЛ-переноса

на больших временах счета КУ

- 6. Интерпретация решений КУ
- 7. Выводы
- 8. Литература

Рассматривается (чистое) кинетическое уравнение (КУ) вида

 $\partial S(\omega,\theta) / \partial t = I_{NL} [S(\omega,\theta)] , \qquad (1)$

где $I_{NL}[S]$ - четырехволновый кинетический интеграл (КИ) Хассельманна(1962), кубический по спектру $S(\omega, \theta)$ или S(k) вида

$$I_{NL}[S(\mathbf{k})] = 4\pi \iiint M_{\mathbf{k},\mathbf{k}_{1},\mathbf{k}_{2},\mathbf{k}_{3}}^{2} F_{3}(S_{\mathbf{k}}, S_{\mathbf{k}_{1}}, S_{\mathbf{k}_{2}}, S_{\mathbf{k}_{3}}) \delta(\mathbf{k} + \mathbf{k}_{1} - \mathbf{k}_{2} - \mathbf{k}_{3}) \delta(\omega + \omega_{1} - \omega_{2} - \omega_{3}) d\mathbf{k}_{1} d\mathbf{k}_{2} d\mathbf{k}_{3}$$

Формально, интеграл I_{NL}[S] сохраняет энергию, волновое число и импульс волн (при условии сходимости интеграла...).

Распространены 2 подхода к расчету КИ: 1) с точным интегрнием дельта-функций (Масуда 1980; Полников 1989; Лавренов 1998), 2) с преобразованием КИ в интеграл по поверхности (Вебб 1978, Резио и др 1991, ван Вледдер 2006), получивший название WRT-метод.

В работе (Полников 1989) был существенно усовершенствован алгоритм Масуды(1980). Впервые решение КУ (1) было з выполнено в работе (Полников 1990).

В ней (Полников 1990) было показано установление универсальной формы спектра в решении КУ, а в (Полников 1994) – установление спектров колмогоровского типа $S(\omega) \sim \omega^{-4}$ и $S(\omega) \sim \omega^{-11/3}$ (т.н. спектры КЗ, Захаров и соавт. 1966,1982), <u>при наличии</u> накачки *In* и диссипации *Dis* в <u>обобщенном</u> КУ вида

$$\partial S(\omega,\theta) / \partial t = I_{NL} [S(\omega,\theta)] + In(\omega,\theta) - Dis(\omega,\theta)$$
(2)

В работе Коматсу и Масуда(1996) было показано, что в решении КУ (1) устанавливается <u>хвост спектра S(\omega)</u>~\omega^-4.

Анализом таких решений занимались Лавренов (2002), Пушкарев и др. (2003), Бадулин и др. (2005)(и др.). Они решали <u>КУ вида (2)</u> и изучали динамику установления спектров КЗ.

Однако асимптотики функции нелинейного переноса(НЛП) $Nl(\omega, \theta) \equiv I_{NL}[S(\omega, \theta)]$

и 2D-форма установившегося спектра пока остаются мало изученными. Эти вопросы и являются объектом исследования

Задачи данной работы включают изучение

следующих вопросов

- асимптотика одномерного НЛ переноса Nl(ω) на высоких частотах (ω>>2ω_p) <u>на первом шаге решения КУ</u>для различных форм начальных спектров вида JONSWAP;
- форма хвоста одномерного спектра S(ω) (ω>2ω_p) на больших масштабах его эволюции (t>10⁴·1/ω_p);
- асимптотика одномерного переноса Nl(ω) на высоких частотах (ω>>2ω_p) при <u>больших временах</u> эволюции спектра (t>10⁴·1/ω_p) для различных форм начальных спектров;
- зависимость <u>интегральных параметров</u> формы 2D-спектра *S(ω,θ)* при t>10⁴·1/ω_р от начальных условий;
- оценка изменчивости полной энергии и волнового действия и их потоков в ходе численной эволюции спектра волн;
- трактовка полученного решения КУ в свете работ Захарова и соавторов (ДАН 1966 и ФАО 1982).

Метод решения задачи

$$\partial S(\omega,\theta) / \partial t = I_{NL} [S(\omega,\theta)]$$
(1)

2. Начальный спектр задается в форме JONSWAP(Комен и др. 1994)

$$S_{J}(\omega,\theta,n,\gamma) = S_{PM}(\omega,n)\gamma^{\left\{(\omega/\omega_{p}-1)^{2}/2\sigma^{2}\right\}}\Psi(\theta)$$
(3)

где

$$S_{PM}(\omega,n) = \omega^{-n} \exp\left[-(n/4)(\omega_p/\omega)^4\right]$$
(4)

спектр Пирсона-Московица, обобщ. на произв. степень спек. *n*. Начальная частота пика $\omega_p(0)$ <u>всегда равна 2 рад/с.</u> **3. Асимп-1ш КИ (***и решение КУ*) выполняются в (ω, θ) - области [$0.64 \le \omega \le 80(\underline{7})$ rad/s; $-180^\circ \le \theta \le 180^\circ$] (5)

на сетке

 $\omega_i = \omega_1 q^{i-1}$ при $\omega_1 = 0.64$ р/с, $q = 1.05, 1 \le i \le I = 100(\underline{50})$ и $\Delta \theta = 5^0(\underline{10}^0)$. (6) 4. Используются алгоритмы счета КИ по работе Полников (ФАО 1989) и числ. решения КУ по работе Полников (ФАО 1990). 5. Оценка потока эн (P_E) вып. по ф-ле $P_E(\omega) = -\int_0^{\omega} (\int Nl(\omega, \theta) d\theta) d\omega$ (7)

Результаты. Асимптотика НЛП на 1м шаге

На сетке [0.64 ≤ ω ≤ 80p/с; -180° ≤ θ ≤ 180°] рассчитан КИ для ряда начальных спектров вида (3-4) и оценена асимптотика НЛП вида *Nl(ω)=c·ω*^p.

Результаты представлены на рис. 1-5 и в Табл.1

Рис. 1. Низ.Част. часть НЛП для S(ω,θ) с парам. n=6, γ=3.3; 1.0 и ψ=const. (далее изотропный спектр, ψ=с, имеет обозн. an=0) Видно, что хвост НЛП положителен (>0) и гладко спадает при ω>>2ω_p.

ВЧ асимптотики НПЛ на 1вом шаге

Рис.2. Асимптотики ВЧ хвоста спектра.

Видно, что 1) хвост имеет меняющийся наклон.

2) В промежут обл ч. он близок к величине *p≈n*-1 (*Nl(\omega)~\omega*S(ω)). 3) На всем хвосте спад Nl(ω) идет слабее спада ω S(ω).

4) С уменьш. парам. γ, степень спада НЛП *р* увеличивается в (что характеризуется как нелокальность НЛ взаимодействия).

PAH IT24

То же самое для спектров с пар., n=5, an=0 (рис.3)

При n=5, an=0, спад спектра имеет единый наклон (!), но p < n-1, и p растет с уменьшением γ . !! Хвост NI(ω) чуствует форму пика S(ω) (нелокальность)!!

ВЧ асимптотики НПЛ на 1вом шаге

То же для спектра с пар. $\gamma = 3.3$, n=5, an=2 (cos² (θ)

Рис. 4. Асимптотики ВысЧаст хвоста спектра для двух уг. ф. Ч.

Видно, что увеличением угловой направленности спектра скорость спадания хвоста НЛП увеличивается. !! Хвост Nl(ω) чуствует угловую форму S(ω) !! 10

Сложнее дело обстоит со спектром при n=4 (рис.5)

Рис.5. НПЛ (a) и его ВЧ асимптотика (б) для сп с пар. ү =3.3, n=4, an=0.

Видно, что для спектра с хвостом $S(\omega) \sim \omega^{-4}$, хвост <u>НПЛ хоть и мал, но не равен нулю(!).</u> При <u>станд. форме пика</u> и $\omega > 2\omega_p$ НЛП еще положит (Nl(ω) >0), но медленно спадает, 11 демонстрируя изменчивость степени спадания р.

Общий результат по асимптотикам представлен в табл.1.

Таблица 1. Асимптотика НЛП для разл. форм нач. спектров.

N⁰	Нача	льный (Асимптотика	
вар.	n	γ	Ψ(θ)	р
1	6	3.3	const	4.4(4.9)
2	6	1.0	const	4.6(5.2)
3	5	3.3	const	3.3
4	5	1.0	const	3.8
5	5	3.3	$\cos^2(\theta)$	3.8
6	4	3.3	const	(0.85)

Примечание. В скобках указан закон спадания НЛП для малой части полосы частот хвоста.

Форма спектров и НЛП на больших *t*

При t=0 всегда хвост Nl(ω) велик(!), но при t>10⁴·1/ ω_p Nl(ω) ~ - $\omega^{-4.1-\epsilon}$ (!!!)¹⁴

Интегральные характеристики S(ω,θ)

Автомодельная форма установившихся 2D-спектров S_{am}(ω, θ) визуально представлена в (Полников 1990, Бадулин и др 2005, и др). А/М<u>спектры имеют узконаправленный пик и широконаправленный хвост.</u>

Количественно форма 2D-спектров может характеризоваться <u>частотной шириной</u> $B = \sigma^2 / \omega_p S_p$ (8) где $\sigma^2 = \int_{0}^{\infty} \int_{0}^{2\pi} S(\omega, \theta) d\omega d\theta = E_r$ - дисперсия возвышений, пропорц-я энергии волн E, и функцией угловой направленности (9)

$$A(\omega) = S(\omega, \theta_p) / S(\omega) \quad . \tag{9}$$

Например,

для спектра J(ү=3.3; 5) **B=0.34**, для ПМ(ү=1.0; 5) **B=0.67**.

При Ψ = const A_p = 0.16; Ψ = cos²(θ) A_p =0.64; Ψ = cos¹²(θ) A_p = 1.4.

Общие результаты оценок параметров формы $S_{am}(\omega, \theta)_{15}$ представлены в табл. 2.

Асимптотики NI(ω) и

Таблица 2. Асимптотики Nl(ω) и параметры S(ω,θ) на большом времени эволюции (счета КУ)

N⁰	Начальный спектр		Время	Асимп.	Параметры		
вари				эволюции,	NI(w)	S (ω)	
анта	n	γ	Ψ(θ)	сек;	р	B*100	A _p *100
1	6	3.3	const	1.3 ·10 ⁶	4.1	22	16
2	6	1.0	const	$4.2 \cdot 10^{6}$	4.2	25	16
3	5	3.3	const	$1.3 \cdot 10^5$	4.1	25	16
4	5	1.0	const	7.9 ·10 ⁵	4.2	25	16
5	4	3.3	const	6.9 ·10 ⁴	4.1	23	16
6	4	1.0	const	$5.4 \cdot 10^4$	4.2	26	16
7	5	1.0	$\cos^2(\theta/2)$	$4.1 \cdot 10^{6}$	4.2	32	46
8	5	1.0	$\cos^8(\theta/2)$	3.6 ·10 ⁶	4.1	34	63
9	5	1.0	$\cos^2(\theta)$	$4.1 \cdot 10^5$	4.2	33	64
10	5	1.0	$\cos^4(\theta)$	$8.7 \cdot 10^{6}$	4.2	33	66
11	5	3.3	$\cos^{12}(\theta)$	5.6 ·10 ⁶	4.2	31	61

Особенности формы $S_{am}(\omega, \theta)$ и асимптотик $Nl(\omega)$ таковы 1) спектр $\underline{S}_{AM}(\underline{\omega})\sim \underline{\omega}^{-4}$, 2) ВЧ асимптотика $Nl(\underline{\omega}) \sim - \underline{\omega}^{-4.1-\epsilon}$. 3) частотная форма пиков спектра $S_{am}(\omega, \theta)$ бывает двух типов: <u>узкополосная</u>(B=0.23±0.02 при $\Psi_{t=0} = c$;) 16 и <u>среднеполосная</u>(B=0.33±0.01 при при $\Psi_{t=0} \neq c$), т.е. типа J($\underline{\omega}$)cos² θ .

Детали формы 2D-спектров

Сравнение формы S_{am}(ω) с формой спектра J(ω)

Рис.9. Типичный вид а/модельной угловой функции $A(\omega)$ при $\psi \neq c$.

Поиск интерпретации решений КУ

Для интерпретации установившейся формы спектра нужно

1. Рассчитать функции потоков $P_{E}(\omega)$ и $P_{N}(\omega)$

ГДе
$$P_{E}(\omega) = -\int_{\omega_{\min}}^{\omega} \operatorname{Nl}(\omega, \theta) d\theta d\omega$$
 И
$$P_{N}(\omega_{max}) = -\int_{\omega_{min}}^{\omega} (Nl(\omega, \theta) / \omega) d\theta d\omega$$
 (10)
2. Оценить степ. сохр. полной энергии ΔE и волнов. числа ΔN ,
ГДе
$$\Delta E = \int_{\omega_{min}}^{\omega_{max}} (\int Nl(\omega, \theta) d\theta) d\omega$$
 И
$$\Delta N = \int_{\omega_{min}}^{\omega_{max}} (Nl(\omega, \theta) / \omega) d\theta d\omega$$
 (11)
(ВИДНО, ЧТО $\Delta E = -P_{E}(\omega_{max})$ И $\Delta N = -P_{N}(\omega_{max})$)

3. Определить причину установления спектра <u> $S_{AM}(\omega) \sim \omega^{-4}$ </u>.

Для этой цели были выполнены расчеты функций потоков

 $P_E(\omega)$ И $P_N(\omega)$

для двух режимов численного решения КУ:

а) с сохранением энергии Е <u>на каждом шаге счета КИ</u> б) с сохранением волн. действия N <u>на каждом шаге счета КИ</u>

Поиск интерпретации решений КУ Расчет потоков

Счет КУ с сохран. волн. действия N (n=5, γ=1.0, Ψ=c)

Поиск интерпретации решений КУ Хвост спектра S_{am}(ω) и выше него

Характер эволюции хвоста спектра

Рис.10. Пояснение к расчетной форме хвоста. Стрелка-предельная частота в 4-в конфигуаци. Сплошная жирнаяполное отрезание хвоста при учете диссипации за пределами расч. области (Бадулин др. 2005)

Выводы:

В реш. КУ(1) всегда (E=с или N=c) устанав-ся хвост $\underline{S}_{AM}(\underline{\omega}) \sim \underline{\omega}^{-4}$. (У нас выше по частоте ($\underline{\omega} > \omega_{max}$) идет диагностический хвост $S_{DI}(\underline{\omega}) \sim \underline{\omega}^{-4\pm}$) Результат решения КУ не зависит от вида потока при $\underline{\omega} >> \omega_p(!)$. <u>Уходящие или приходящие потоки адсорб. или порожд. хвостом спектра</u> Т.о., спектр $\underline{S}_{AM}(\underline{\omega}) \sim \underline{\omega}^{-4}$ никак не определяется потоками $P_E \mu P_N$, а его вид есть внутреннее свойство КИ.

Интерпретация решений КУ

В отличие от трактовок установившихся форм спектра

 $S(\omega) = c \cdot \omega^{-4}$

как спектров Колмогорова-Захарова

(Пушкарев др. 2003; Бадулин др. 2005, которые решали КУ (2) при N=con),

мы трактуем эти спектры

<u>как нестационарный аналог аналитического решения</u>

полученного в работе Захарова-Филоненко (ДАН,1966)

для

бездиссипативного («чистого») КУ вида

$$\partial S(\omega, \theta) / \partial t = I_{NL} [S(\omega, \theta)]$$

Интерпретация решений КУ

Основания для новой трактовки решения КУ таковы:

1) Независимо от режима числ. решения задачи (E=с или N=c),

<u>формируется а/м пик,</u> при котором всегда хвост $S_{AM}(\omega) \sim \omega^{-4}$;

2) При а/м пике, на хвосте $S_{AM}(\omega)$, $Nl(\omega)$ всегда <u>отрицателен</u>, оч., но <u>не равен 0(!).</u> Форма $Nl(\omega) \sim -\omega^{-4}$. обеспечивает устан. и а/м эволюцию $S_{AM}(\omega, t)$.

3) Наличие постоянных (колмогоровских) потоков P_E и P_N никак не сказывается характере решения КУ (1).

Главную роль играет <u>пик спектра и нелокальность НЛП</u>, Т.е. имеет место нарушение постулатов теории Колмогорова

Математика процесса такова, что во время эволюции <u>формируется</u> а/м пик спектра в обл. (ω_p , θ_p), обеспечивающий отрицательный НЛП формы Nl(ω) ~ - ω^{-4} , который и <u>стабилизирует форму решения КУ (1)</u> <u>вида S_{AM}(ω) ~ ω^{-4} .</u>

Выводы

- Асимптотику спадания Nl(ω) на выс.ч. определяют: форма пика в обл. (ω_p, θ_p) форма, его угловая ф-ция и хвост спектра. С уменьшением скорости спада S(ω) снижается спад и интенсив. положительной асимпт. Nl(ω). При S(ω)~ω⁻⁴ хвост Nl(ω) ~ -ω⁻⁴<0.
- **2.** При форме хвоста **S**(ω)~ ω^{-4} и особой, **a**/**м 2D-форме пика** спектра, устанавливается асимптотика **N**(ω) ~ ω^{-4} , что и **обеспечивает форму решения** КУ (1) вида **S**_{AM}(ω) ~ ω^{-4} .
- **3.** А/м форма решения $S_{AM}(\omega) \sim \omega^{-4}$ не определяется наличием постоянных (или перем.) потоков эн. P_E и в.д. P_N по спектру.
- 4. Из п.3 следует, что а/м численные решения КУ(1) вида S_{AM}(ω)~ω⁻⁴ не являются колмогоровскими спектрами.
- 5. А/м численные решения «чистого» КУ(1) вида S_{AM}(ω)~ω⁻⁴ есть <u>нестационарный аналог</u> аналитического решения Захарова-Филоненко (ДАН,1996).
 Здесь (но не в решении «диссипативного» КУ вида (2)) форма S_{AM}(ω)~ω⁻⁴ определяется не физикой потоков по спектру,
 - а <u>математическими свойствами КИ</u>, установленными в (ДАН, $\frac{1}{2}$ 996). Т.о. $S_{AM}(\omega) \sim \omega^{-4}$ есть непотоковый спектр 3Ф (!), а <u>не сп. КЗ.</u>

Основная литература

- 1. Захаров В.Е., Филоненко Н.Н. Спектр энергии для стохастических колебаний поверхности жидкости // Доклады АН СССР. 1966. Т. 170, №6. С. 1292-1295
- 2. Захаров В.Е., Заславский М.М. Интервалы накачки и диссипации в кинетическом уравнении слаботурбулентной теории ветровых волн // Изв. АН СССР. ФАО. 1982. 18,№10. С.1066-1026.
- 3. Полников В.Г. Расчет нелинейного переноса энергии по спектру поверхностных гравитационных волн // Изв. АН СССР. ФАО.1989.Т. 25, №11. С.1214-1225.
- 4. Полников В.Г. Численное решение кинетического уравнения для поверхностных гравитационных волн // Там.же. 1990. Т. 26, №2. С.168-176.
- 5. Resio, D., and Perry, W.: A numerical study of nonlinear energy fluxes due to wavewave interactions., J. Fluid Mech., 223, 603-629, 1991
- 6. *Van Vledder G*. The WRT method for the computation of non-linear four-wave interaction in discrete spectral wave m. J. Coastal Engineering, 2006.V.53,P. 223-242.
- 7. *Pushkarev A. N., D. Resio, and V. E. Zakharov*. Weak turbulent approach to the wind generated gravuty seas waves//Physica D; 2003. v. 184, pp 29-63.
- 8. *Badulin S. I., A. N. Pushkarev, D. Resio, and V. E. Zakharov* Self-similarity of wind-driven seas // Nonlinear Processes in Geophysics, 12, 891–945, 2005 . ²⁵