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Introduction: collapses vs. solitons

In our paper (Zakharov and K., 1986) the quasiclassical
collapsing solution for the 3D NLS was constructed.
Besides, the whole family of quasi-classical weak
collapses was predicted. The upper boundary of this
family represents the self-similar weak collapsing solution.

Based on the quasiclassical approach analogous to the
Whitham procedure, we show that the strong collapsing
solution of the equations and the time-dependent ansatz
within the variational method have near singularity the
same self-similar asymptotics.

Here we find the whole family of the quasiclassical
collapsing self-similar substitutions with the bounds
corresponding to strong collapse and self-similar solution.
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General properties of the KP equation

Next, we will use the standard form for KP

∂

∂x
(ut + 6uux + uxxx)−∆⊥u = 0.

In the Hamiltonian form, it reads

ut =
∂

∂x

δH
δu

where

H =

∫

[

u2
x

2
+

(∇⊥w)
2

2
− u3

]

dr ≡ 1

2
I1 +

1

2
I2 − I3,

with wx = u. Besides H, KP conserves
P = 1/2

∫

u2dr > 0.
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General properties of the KP equation

The KP soliton is a solution u = u(x− V t, r⊥) which
represents a stationary point of the Hamiltonian H for
fixed P : δ(H + V P ) = 0.

For arbitrary d the value of H on the soliton solution can
be expressed through P :
Hs=

2d−5
7−2d

V Ps.

This answer can be obtained by using scaling
transformations remaining P,

u(x, r⊥) → a−1/2b(1−d)/2u(x/a, r⊥/b).
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General properties of the KP equation

Under these transformations H becomes a function of the
scaling parameters a and b:

H (a, b)=
1

2
a−2I1 +

1

2
a2b−2I2 − a−1/2b(1−d)/2I3.

At d = 3 the function H(a, b) is unbounded from below. It
follows if one considers the line b = a2 which corresponds
to self-similar behavior.
The unboundedness of the Hamiltonian represents on the
key criteria for the wave collapse in 3D KP.
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Role of radiation

Under scaling transformation of H along the parabolas
b ∝ a2 the exponents of the quadratic terms (equal to −2)
and in the cubic term (−5/2) do not coincide, and hence
the possible collapse is not critical and should be weak,
corresponds to the self-similar collapse. In such regimes
the radiation of small amplitude waves from the collapsing
region promotes collapse.

In the case of the unbounded H from below the emission
of small-amplitude waves promotes collapse. Consider a
domain Ω with HΩ < 0. Then, using the mean value
theorem, it follows the following inequality
|u|max ≥ |HΩ|

2PΩ

.

Hence we see that radiation promotes collapse.
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Variational ansatz

Action S for the KP equation is written as

S =

∫
[

1

2
wtwx −

1

2
w2

xx −
1

2
(∇⊥w)

2 + w3
x

]

dtdr;

δS = 0 is equivalent to KP.

Choose the test function in the form
w = a1/2b−1f(ξ‖, ξ⊥), u = a−1/2b−1U(ξ‖, ξ⊥),

where a and b are functions of t, ξ‖ = x/a and ξ⊥ = r⊥/b

are self-similar variables.

Substituting test function into S and integrating over r we
get the Lagrangian in terms of a and b:

L = a
bt
b
M −H (a, b) .

Here M is the constant.
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Variational ansatz

This gives equations for a and b

Mat = −b
∂H
∂b

, Mbt = b
∂H
∂a

.

These equations have a stationary solution in the form of
3D solitons when a = b = 1. Linear stability of this
solution is defined from equations for small perturbations
α, β (a = 1 + α, b = 1 + β):

Mαt = V P (10α− 4β) , Mβt = V P (19α− 10β) .

Hence, we arrive at the instability with growth rate
γ = ±2

√
6V P

M
.
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Variational ansatz

The nonlinear stage of this instability results in collapse
because of the unboundedness of H as a → 0 and b → 0.
Simple analyze the equations of motion gives the
following asymptotics for a:
a → (t0 − t)1/4.

In this case, near the collapsing time t = t0 the diffraction
and nonlinear terms in H (a, b) are compensated each
other. This regime, as we will see below, is realized for
the quasi-classical initial conditions.

Note that the trial function in the variational ansatz
conserves momentum P and therefore collapse in this
ansatz belongs to the strong ones.
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Quasi-classical collapse

For the initial distributions for which it is possible to neglect
both dispersion and diffraction at the beginning the temporal
behavior of u will be defined by the Hopf equation

ut + 6uux = 0,

where u depends on r⊥ as a parameter. Thus, we arrive
immediately to breaking where our assumption is invalid and
we have to take into account both the diffraction and
dispersion terms. As a result of these linear effects, the
spatial oscillatory structure begins to develop.
However in 3D all types of solitons are unstable. In particular,
the 1D solitons are unstable relative to the KP instability. The
same statement is valid for 2D solitons (K.& Turitsyn 1982).
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Quasi-classical collapse

The nonlinear stage of this instability is a collapse. It means
that instead of soliton train in the 1D case one should expect
the formation of the oscillatory structures containing the
collapsing solitons. Thus, the solution in this case should be
constructed in the form

u = u(r, t,Φ(r, t))

where u is 2π-periodic in Φ and is slowly varying function
relative to r and t. Also the slow varying functions are Φt and
∇Φ .
First, consider the linear case when u obeys the linear KP
equation
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Quasi-classical collapse

In this case, we can restrict ourselves by a one-harmonic
dependence

u = AeiΦ + c.c..

Then the first order leads us the Hamilton-Jacobi equation

Φt + ω(∇Φ) = 0,

where ω(k) = −k3
x − k2

⊥/kx is the dispersion law and k = ∇Φ

is the wave vector.
The next order gives the continuity equation for

∂A

∂t
+

1

2A
div(A2

v) = 0,

where v = ∂ω(k)/∂k.
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Quasi-classical collapse

Because of the nonlinearity of KP we have to take into
account all harmonics,

u =
∞
∑

n=−∞

Ane
inΦ, An = A−n = A∗

n.

As a result, we have for n 6= 0

∂An

∂t
+

1

2An

div(A2
nvn) + 3

∂

∂x
sn = 0,

Φnt + ω(∇Φn) + 3Φnx
sn
An

= 0,

where Φn = nΦ and sn =
∑

n=n1+n2
An1

An2
.
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Quasi-classical collapse

For zero harmonics a separate equation arises,

∂A0

∂t
+ 3

∂

∂x
〈u2〉 = 0.

Here

〈u2〉 =
∞
∑

n=−∞

A2
n = s0.

It should be noted that this infinite system is overdetermined
because for each n,m 6= 0 we get the following constraints

πn(r, t) = πm(r.t)

where
πn(r, t) = n2Φ2

x − sn
An

.
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Quasi-classical collapse

Let us seek for the solution of system in the self-similar form

An(r, t) = (t0 − t)−αfn

(

x

(t0 − t)β
,

r⊥
(t0 − t)γ

)

,

Φ(r, t) = λ2

∫ t dt

(t0 − t)κ+1
+ (t0 − t)−κϕ

(

x

(t0 − t)β
,

r⊥
(t0 − t)γ

)

where t0 is a collapse time, λ2 is a constant, α, β, γ, and κ

are unknown exponents.
After substitution we have

β = 1− α, γ = 1− α/2, κ = 3α/2− 1.
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Quasi-classical collapse

The total cavity momentum P can only reduce during the
collapsing time,

Pcav =
1

2

∫

cav

u2d3r ∝ (t0 − t)3−4α,

i.e. α ≤ 3/4. Hence we can see that α = 3/4 corresponds to
a strong collapse regime, coinciding with the variational
anzats.
In this family the low boundary is defined from the
quasi-classical criterion. It is possible to show that the
quasi-classical criterion reads as α > 2/3, it improves with
time.
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Quasi-classical collapse

α = 2/3 is a low boundary of this family where the
quasi-classical assumption is invalid. This value replies to the
self-similar solution of the 3D KP equation describing the
most rapid weak collapse.
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