Logarithmic scaling and critical collapse in Davey-Stewartson equation

Pavel Lushnikov ${ }^{1,2}$ and Natalia Vladimirova ${ }^{2,3}$

${ }^{1}$ Department Landau Institute, Russia
${ }^{2}$ Department of Mathematics and Statistics, University of New
Mexico, USA
${ }^{3}$ Brown University, USA

Support:
NSF 0807131, NSF 1004118, NSF 141214, NSF 1814619

- Explosive instability (blow-up):
formation of singularity in a finite time
- Collapse: blow-up with the contraction of the spatial extent of solution to zero
- Explosive instability (blow-up): formation of singularity in a finite time
- Collapse: blow-up with the contraction of the spatial extent of solution to zero

- Explosive instability (blow-up): formation of singularity in a finite time
- Collapse: blow-up with the contraction of the spatial extent of solution to zero

- Explosive instability (blow-up): formation of singularity in a finite time
- Collapse: blow-up with the contraction of the spatial extent of solution to zero

- Explosive instability (blow-up): formation of singularity in a finite time
- Collapse: blow-up with the contraction of the spatial extent of solution to zero

Multiple collapses (filamentation) of laser beam

Dynamics of water waves of finite depth \boldsymbol{h} Potential flow: $\mathbf{v}=\nabla \Phi$

$$
\psi e^{i k x-i \omega_{k} t}+c . c . \text { - wave amplitude (envelope) }
$$

$$
\omega_{k}^{2}=\left(g k+\alpha k^{3}\right) \tanh (k h)-\text { dispersion relation }
$$

Infinite depth $\boldsymbol{h} \rightarrow \infty$

$$
k^{2} \alpha / g>1 / 2 \quad \Rightarrow \quad \lambda \lesssim 2.4 \mathrm{~cm}
$$

\Rightarrow Focusing 2D Nonlinear Schrödinger Equation (NLSE)

$$
i \psi_{t}+\left(\partial_{x}^{2}+\partial_{y}^{2}\right) \psi+|\psi|^{2} \psi=0
$$

$$
k^{2} \alpha / g<1 / 2 \quad \Rightarrow \quad \lambda \gtrsim 2.4 \mathrm{~cm}
$$

\Rightarrow Hyperbolic 2D NLSE ${ }^{1}$

$$
i \psi_{t}+\left(\partial_{x}^{2}-\partial_{y}^{2}\right) \psi+|\psi|^{2} \psi=0
$$

Finite depth \boldsymbol{h}

Davey-Stewartson equation ${ }^{1,2}$ (DSE), also called by Benney-Roskes equation ${ }^{3,4}$

$$
i A_{\tau}+\lambda A_{\xi \xi}+\mu A_{\eta \eta}=\chi|A|^{2} A+\chi_{1} A \Phi_{\xi}
$$

$$
\alpha \Phi_{\xi \xi}+\Phi_{\eta \eta}=-\beta\left(|A|^{2}\right)_{\xi},
$$

$\boldsymbol{\Phi}$ results from the soft mode of the motion of the entire depth of fluid
${ }^{1}$ A. Davey and K. Stewartson (1974).
${ }^{2}$ D.J. Benney and G.J. Roskes (1969).
${ }^{3}$ V.D. Djordjevic and L.G. Redekopp (1977).
${ }^{4}$ M.J. Ablowitz and H. Segur (1979).

Figure 1. Map of parameter space, showing where the coefficients in (2.25) change sign. The dynamics of wave evolution is different in each region.

$$
\begin{gathered}
i A_{\tau}+\lambda_{\infty} A_{\xi \xi}+\mu_{\infty} A_{\eta \jmath}=\chi_{\infty}|A|^{2} A \\
\lambda_{\infty}=-\frac{\omega_{0}}{8 \omega}\left(\frac{1-6 \tilde{T}-3 \tilde{T}^{2}}{1+\tilde{T}}\right), \\
\mu_{\infty}=\frac{\omega_{0}}{4 \omega}(1+3 \tilde{T}) \\
\chi_{\infty}=\frac{\omega_{0}}{4 \omega} \frac{8+\tilde{T}+2 \tilde{T}_{2}}{(1-2 \tilde{T})(1+\tilde{T})}
\end{gathered}
$$

M.J. Ablowitz and H. Segur, JFM, 92, 691-715 (1979).

Davey-Stewartson Eq. in maximally rescaled coordinates:
$i \psi_{t}+\left(\partial_{x}^{2}+\partial_{y}^{2}\right) \psi+|\psi|^{2} \psi-\mu \psi \partial_{x} \phi=0$,
$\partial_{x}^{2} \phi+\nu \partial_{y}^{2} \phi=\partial_{x}\left(|\psi|^{2}\right)$,
$\nu>0$

Integrable cases (hyperbolic-elliptic and elliptic-hyperbolic):
DS I: $\quad i \psi_{t}+\left(-\partial_{x}^{2}+\partial_{y}^{2}\right) \psi-|\psi|^{2} \psi+2 \psi \partial_{x} \phi=0$,

$$
\partial_{x}^{2} \phi+\partial_{y}^{2} \phi=\partial_{x}\left(|\psi|^{2}\right),
$$

DS II:

$$
\begin{aligned}
& i \psi_{t}+\left(\partial_{x}^{2}+\partial_{y}^{2}\right) \psi+|\psi|^{2} \psi-2 \psi \partial_{x} \phi=0 \\
& \partial_{x}^{2} \phi-\partial_{y}^{2} \phi=\partial_{x}\left(|\psi|^{2}\right)
\end{aligned}
$$

Focus on elliptic-elliptic case:

$i \psi_{t}+\left(\partial_{x}^{2}+\partial_{y}^{2}\right) \psi+|\psi|^{2} \psi-\mu \psi \partial_{x} \phi=0$,
$\partial_{x}^{2} \phi+\nu \partial_{y}^{2} \phi=\partial_{x}\left(|\psi|^{2}\right), \quad \quad \nu>0$
The Hamiltonian

$$
H=\int|\nabla \psi|^{2} d \mathbf{r}-\frac{1}{2} \int|\psi|^{4} d \mathbf{r}+\frac{\mu}{2} \int\left(\phi_{x}^{2}+\nu \phi_{y}^{2}\right) d \mathbf{r}
$$

Virial theorem

$$
\frac{d^{2}}{d t^{2}} \int\left(x^{2}+y^{2}\right)|\psi|^{2} d \mathbf{r}=8 H \quad \Rightarrow \text { Collapse for } H<0^{1-6}
$$

${ }^{1}$ M.J. Ablowitz and H. Segur, JFM, 92, 691-715 (1979).
${ }^{2}$ G.C. Papanicolaou, C. Sulem, P.L. Sulem, X.P. Wang, Physica D, 72, 61 (1994)
${ }^{3}$ M.J. Ablowitz, G. Biondini, S. Blair, Phys. Lett. A 236 (1997) 520.
${ }^{4}$ M.J. Ablowitz, G. Biondini, S. Blair, Phys. Rev. E 63 (2001) 605.
${ }^{5}$ M.J. Ablowitz, I. Bakirtas and B. Ilan (2005).
${ }^{6}$ M.J. Ablowitz, I. Bakirtas and B. Ilan (2005).

Critical NLSE collapse

$$
|\psi| \sim \frac{1}{L(t)} R\left(\frac{r}{L(t)}\right), \quad L(t) \propto\left(t_{c}-t\right)^{1 / 2}
$$

ground state soliton of NLSE

Critical collapse in Davey-Stewartson Eq (DSE):

$$
|\psi| \sim \frac{1}{L(t)} R\left(\frac{x}{L(t)}, \frac{y}{L(t)}\right), \quad L(t) \propto\left(t_{c}-t\right)^{1 / 2}
$$

ground state soliton of DSE

${ }^{1}$ M.J. Ablowitz, I. Bakirtas and B. Ilan (2005).

Collapses in critical NLSE and critical Keller-Segel equation (KSE)

2D NLSE

2D KSE

$$
i \frac{\partial}{\partial t} \psi+\triangle \psi+|\psi|^{2} \psi=0
$$

$$
\begin{aligned}
\frac{\partial \rho}{\partial t} & =\Delta \rho-\nabla(\rho \nabla c) \\
0 & =\Delta c+\rho .
\end{aligned}
$$

Simulations of Davey-Stewartson Eq (DSE) anisotropic collapse:

(a)

(b)

Critical collapse in Davey-Stewartson Eq (DSE):

Blow up variables
and lens transform

$$
p \equiv \frac{x}{L(t)}, \quad q \equiv \frac{y}{L(t)}, \quad \tau=\int_{0}^{t} \frac{d t^{\prime}}{L\left(t^{\prime}\right)^{2}}
$$

$$
\psi(\mathbf{r}, t)=\frac{1}{L(t)} V(p, q, \tau) e^{i \tau+i L(t) t L(t)\left(p^{2}+q^{2}\right) / 4}
$$

\Rightarrow Davey-Stewartson Eq. transforms into

$$
i \partial_{\tau} V+\nabla_{p, q}^{2} V-V+|V|^{2} V+\frac{\beta}{4}\left(p^{2}+q^{2}\right) V-\mu V \frac{\partial_{p}^{2}}{\partial_{p}^{2}+\nu \partial_{q}^{2}}|V|^{2}=0,
$$

$$
\beta=-L^{3} L_{t t} \text { - adiabatically slow small parameter } \beta \ll 1
$$

$$
\text { and } \quad \nabla_{p, q}^{2} \equiv \partial_{p}^{2}+\partial_{q}^{2}
$$

$$
a=-L(t) \partial_{t} L(t)>0
$$

$$
L(t)=\sqrt{t_{c}-t} f\left(\ln \left(t_{c}-t\right)\right) \Longrightarrow a=-L L_{t}=\frac{\sqrt{t_{c}-t}}{2 \sqrt{t_{c}-t}} f^{2}+\frac{t_{c}-t}{t c-t} f f^{\prime}=\frac{f^{2}}{2}+f f^{\prime}
$$

Logarithmically slow functions

Then $\beta=-L^{3} L_{t t} \simeq-a^{2}$ is also adiabatically slow function of time

Looking for solution in the form

$$
V=V_{0}+V_{1}+\ldots
$$

In adiabatic approximation of slow β

$$
\nabla_{p, q}^{2} V_{0}-V_{0}+\left|V_{0}\right| V_{0}+\frac{\beta}{4}\left(p^{2}+q^{2}\right) V_{0}-\mu V_{0} \frac{\partial_{p}^{2}}{\partial_{p}^{2}+\nu \partial_{q}^{2}}\left|V_{0}\right|^{2}=0
$$

Tail minimization principle: during collapse dynamics

 system dynamically select collapsing solution with minimal tail amplitudeThen we look for $\boldsymbol{V}_{\boldsymbol{0}}$ with the minimal tail

NLSE: In adiabatic approximation of slow β minimizing tails by shooting method:
$\nabla^{2} V_{0}-V_{0}+\left|V_{0}\right|^{2} V_{0}+\frac{\beta}{4} \rho^{2} V_{0}=0$

Approximation through ground state soliton $R(\rho)$

$$
\begin{gathered}
V_{0}=R(\rho)+\left.\beta \frac{\partial V_{0}}{\partial \beta}\right|_{\beta=0}+O\left(\beta^{2}\right) \\
-R+\nabla^{2} R+R^{3}=0
\end{gathered}
$$

NLSE: Full solution V match the envelope of V_{0} of in the tail:

DSE: Full solution V match the envelope of V_{0} of in the tail along both spatial directions

How V_{0} was obtained? (cannot use shooting in 2D elliptic problem)

 Use Newton-conjugate-gradient method (J. Yang, 2009) combined with the correct choice of the asymptotic at infinity:$$
\begin{aligned}
& \nabla^{2} u-\lambda u+u^{3}-\mu \phi u-V(x, y) u=0 \\
& \phi_{x x}+\nu \phi_{y y}=\left(u^{2}\right)_{x x}
\end{aligned}
$$

Here $V=-\frac{1}{4} \beta\left(x^{2}+y^{2}\right)$ for the infinite domain but instead cutoff at large distances for the finite domain as follows:

x, y

Numerics: solve by iterations $\quad \mathbf{u}_{n+1}(\mathbf{x})=\mathbf{u}_{n}(\mathbf{x})+\Delta \mathbf{u}_{n}(\mathbf{x})$
to satisfy the nonlinear system $L_{0} u(x)=0$

$$
\begin{aligned}
L_{0}^{(u)} u & =\nabla^{2} u-\left(V-u^{2}+\lambda\right) u-\mu \phi u \\
L_{0}^{(\phi)} \phi & =\phi_{x x}+\nu \phi_{y y}-\left(u^{2}\right)_{x x}
\end{aligned}
$$

using a linearization about a current iteration $\mathbf{L}_{0} \mathbf{u}_{n}+\mathbf{L}_{1 n} \Delta \mathbf{u}_{n}=0$ with the linearization operator

$$
\begin{aligned}
& L_{1}^{(u)} \delta u=\nabla^{2} \delta u-\left(V-3 u^{2}+\lambda\right) \delta u-\mu \phi \delta u-\mu u \delta \phi \\
& L_{1}^{(\phi)} \delta \phi=(\delta \phi)_{x x}+\nu(\delta \phi)_{y y}-(2 u \delta u)_{x x}
\end{aligned}
$$

At each iteration step the linear system $\mathbf{L}_{0} \mathbf{u}_{n}+\mathbf{L}_{1 n} \Delta \mathbf{u}_{n}=0$
is solved for $\Delta \mathbf{u}_{n}$ by Conjugate gradient method (allows fast FFT-type solved with $N \log N$ operations vs. regular solvers

DSE: In adiabatic approximation of slow
 β minimizing tails

 by Newton-conjugate-gradient method (J. Yang, 2009) combined with the correct choice of the asymptotic at infinity by optimizing the cutoff distance of the potential \boldsymbol{V} to decrease an artificial bump beyond oscillations:$$
\nabla_{p, q}^{2} V_{0}-V_{0}+\left|V_{0}\right| V_{0}+\frac{\beta}{4}\left(p^{2}+q^{2}\right) V_{0}-\mu V_{0} \frac{\partial_{p}^{2}}{\partial_{p}^{2}+\nu \partial_{q}^{2}}\left|V_{0}\right|^{2}=0
$$

\boldsymbol{p} or \boldsymbol{q}

NLSE: How to extract $\boldsymbol{L}(\boldsymbol{t})$ and β from simulations:
The analysis of Taylor series solution of

$$
\begin{aligned}
& \nabla_{p, q}^{2} V_{0}-V_{0}+V_{0}^{3}+\frac{\beta}{4}\left(p^{2}+q^{2}\right) V_{0}-\mu V_{0} \tilde{\phi}=0, \\
&\left(\partial_{p}^{2}+\nu \partial_{q}^{2}\right) \tilde{\phi}=\partial_{p}^{2} V_{0}^{2}, \quad \tilde{\phi} \equiv L \partial_{p} \phi=L^{2} \partial_{x} \phi
\end{aligned}
$$

vs. time-dependent numerics at $|\boldsymbol{p}|,|\boldsymbol{q}| \ll \mathbf{1}$.
Use that $\quad|\psi(\mathbf{0}, t)|=\frac{1}{L(t)} V_{0}(0,0, \beta)$.
$\Rightarrow \quad L=\left.\quad|\psi|^{1 / 2}\left(\frac{1}{|\psi|^{3}+|\psi|_{x x}+|\psi|_{y y}-\mu|\psi| \partial_{x} \phi}\right)^{1 / 2}\right|_{\mathbf{r}=0}$.
Then β is found from the implicit equation $\psi(r=0, t)=\frac{1}{L(t)} V_{0}(\beta, \rho=0)$
for each given $L(t)$ and $\psi(r=0, t)$

Recovery of $L(\tau)$ and $\beta(\tau)$ from numerics:
$L(\tau)$ and $\beta(\tau)$ are not universal but $\boldsymbol{\beta}_{\tau}(\beta)$ is universal (different colors are different initial conditions):

Look at

$$
\nabla_{p, q}^{2} \tilde{V}_{0}-V_{0}+\left|\tilde{V}_{0}\right|^{2} \tilde{V}_{0}+\frac{\beta}{4}\left(p^{2}+q^{2}\right) \tilde{V}_{0}-\mu \tilde{V}_{0} \frac{\partial_{p}^{2}}{\partial_{p}^{2}+\nu \partial_{q}^{2}}\left|\tilde{V}_{0}\right|^{2}-i \nu(\beta) \tilde{V}_{0}=0
$$

as the Schrodinger equation with the effective potential \boldsymbol{U} :

$$
U=-\left|\tilde{V}_{0}\right|^{2}-\mu \tilde{V}_{0} \frac{\partial_{p}^{2}}{\partial_{p}^{2}+\nu \partial_{q}^{2}}-\frac{\beta}{4}\left(p^{2}+q^{2}\right) \tilde{V}_{0}, \quad \rho=\left(p^{2}+q^{2}\right)^{1 / 2}
$$

and complex eigenvalue \boldsymbol{E} :

$$
E=-1-i \nu(\beta)
$$

$\Rightarrow 2$ turning points ρ_{a} and ρ_{b} of WKB:

$$
\rho_{a} \sim 1
$$

Matching of WKB solution to the right from the left of the left turning point to the asymptotic $\quad R_{0}=\frac{A_{R}(\theta)}{\sigma^{1 / 2}} \exp [-\sigma], \sigma \equiv\left(p^{2}+q^{2}\right)^{1 / 2}$

Here A_{R} depends on spatial angle Θ as well as on v and μ as $A_{R}(\Theta)=A_{0}+A_{2} \cos (2 \Theta)$ as follows from multipole expansion for

$$
\mu V \frac{\partial_{p}^{2}}{\partial_{p}^{2}+\nu \partial_{q}^{2}}|V|^{2}
$$

Example:

Oscillating tail is given by the linear combination of confluent hypergometric functions of the first and second kinds:

$$
c_{1} e^{-\frac{i}{4} \sqrt{\beta} \rho^{2}}{ }_{1} F_{1}\left(\frac{1}{2}+i \frac{1}{2 \sqrt{\beta}} ; 1 ; i \sqrt{\beta} \rho^{2}\right)+c_{2} e^{-\frac{i}{4} \sqrt{\beta} \rho^{2}} U\left(\frac{1}{2}+i \frac{1}{2 \sqrt{\beta}} ; 1 ; i \sqrt{\beta} \rho^{2}\right) .
$$

Matching asymptotics and using WKB give that
$V_{0}(\beta, \rho)=\frac{2^{1 / 2} A_{R}}{\beta^{1 / 4}} e^{-\frac{\pi}{2 \beta^{1 / 2}}} \frac{1}{\rho} \cos \left[\frac{\beta^{1 / 2}}{4} \rho^{2}-\beta^{-1 / 2} \ln \rho+\phi_{0}\right], \quad \rho \gg \rho_{b}$
Here $A_{R} \quad$ is determined by the asymptotic of ground state soliton $R_{0}(\rho)=\frac{A_{R}}{\rho^{1 / 2}} e^{-\rho}, \quad \rho \gg 1$
\Rightarrow Asymptotics of complex solution

$$
V(\beta, \rho)=\frac{2^{1 / 2} A_{R}}{-\beta^{1 / 4}} e^{-\frac{\pi}{2 \beta^{1 / 2}}} \frac{1}{\rho} \exp \left[i \frac{\beta^{1 / 2}}{4} \rho^{2}-i \beta^{-1 / 2} \ln \rho-i \phi_{0}\right], \quad \rho \gg \rho_{b}
$$

Introducing the number of particles to the left of the second turning point

$$
N_{b}=\int_{r<\rho_{b} L}|\psi|^{2} d \mathbf{r}=2 \pi \int_{\rho<\rho_{b}}|V|^{2} \rho d \rho .
$$

and balancing the flux of particles to oscillating tails with the loss in $\boldsymbol{N}_{\boldsymbol{b}}$:

$$
\frac{d N_{b}}{d \tau}=\beta_{\tau} \frac{d N_{b}}{d \beta} \quad=- \text { flux }
$$

\Rightarrow ODE system qualitatively similar to NLSE

$$
\left\{\begin{array}{l}
\beta_{\tau}=-\tilde{M}\left[1+c_{1} \beta+c_{2} \beta^{2}+c_{3} \beta^{3}+c_{4} \beta^{4}+c_{5} \beta^{5}+O\left(\beta^{6}\right)\right]^{-1} \exp \left[-\frac{\pi}{\beta^{1 / 2}}\right] \\
L^{3} L_{t t}=-\beta \\
\tau=\int_{0}^{t} \frac{d t^{\prime}}{L^{2}\left(t^{\prime}\right)}
\end{array}\right.
$$

Here

$$
\frac{d N_{b}}{d \beta}=M\left[1+c_{1} \beta+c_{2} \beta^{2}+c_{3} \beta^{3}+c_{4} \beta^{4}+c_{5} \beta^{5}+O\left(\beta^{6}\right)\right]
$$

Compare with old basic ODE system of the standard theory

$$
\left\{\begin{array}{l}
\beta_{\tau}=-\tilde{M} \exp \left[-\frac{\pi}{\beta^{1 / 2}}\right] \\
L^{3} L_{t t}=-\beta \\
\tau=\int_{0}^{t} \frac{d t^{\prime}}{L^{2}\left(t^{\prime}\right)}
\end{array}\right.
$$

Asymptotic solution near collapse time $\boldsymbol{t}_{\boldsymbol{c}}$:

$$
L=\left(2 \pi \frac{t_{c}-t}{\ln \left|\ln \left(t_{c}-t\right)\right|}\right)^{1 / 2}
$$

${ }^{1}$ G. Fraiman (1985); M. Landman, G. Papanicolaou, C. Sulem, and P. Sulem (1987); A. Dyachenko, A. Newell, A. Pushkarev and V.E. Zakharov (1992); V. F. Malkin (1993).

Conclusion and future directions

- Critical collapse of DSE results in log-log scaling as in NLSE
- Tail minimization principle ensures matching of time dependent simulations with self-similar-like soliton solution with finite β
- Going beyond leading order scaling similar to NLSE is possible and will be done as the next step similar to Ref. ${ }^{1}$

Returning to previous Figure

$L(t)$ is not universal but $\boldsymbol{\beta}_{\tau}(\boldsymbol{\beta})$ is universal:

$$
\beta_{\tau}=-\tilde{M}\left[1+c_{1} \beta+c_{2} \beta^{2}+c_{3} \beta^{3}+c_{4} \beta^{4}+c_{5} \beta^{5}+O\left(\beta^{6}\right)\right]^{-1} \exp \left[-\frac{\pi}{\beta^{1 / 2}}\right]
$$

Finding asymptotic of a new basic ODE system

$$
\left\{\begin{array}{l}
\beta_{\tau}=-\tilde{M}\left[1+c_{1} \beta+c_{2} \beta^{2}+c_{3} \beta^{3}+c_{4} \beta^{4}+c_{5} \beta^{5}+O\left(\beta^{6}\right)\right]^{-1} \exp \left[-\frac{\pi}{\beta^{1 / 2}}\right] \\
L^{3} L_{t t}=-\beta \\
\tau=\int_{0}^{t} \frac{d t^{\prime}}{L^{2}\left(t^{\prime}\right)}
\end{array}\right.
$$

$$
\begin{array}{r}
-\ln \frac{L}{L_{0}}=\frac{2 \pi^{3} e^{x}}{\tilde{M}}\left[\frac{1}{x^{4}}+\frac{4}{x^{5}}+\frac{20+\pi^{2} c_{1}}{x^{6}}+\frac{120+6 \pi^{2} c_{1}}{x^{7}}+\frac{840+42 \pi^{2} c_{1}+\pi^{4} c_{2}}{x^{8}}+\frac{6720+336 \pi^{2} c_{1}+8 \pi^{4} c_{2}}{x^{9}}\right. \\
+\frac{60480+3024 \pi^{2} c_{1}+72 \pi^{4} c_{2}+\pi^{6} c_{3}}{x^{10}}+\frac{604800+30240 \pi^{2} c_{1}+720 \pi^{4} c_{2}+10 \pi^{6} c_{3}}{x^{11}} \\
+\frac{6652800+332640 \pi^{2} c_{1}+7920 \pi^{4} c_{2}+110 \pi^{6} c_{3}+\pi^{8} c_{4}}{x^{12}}+\frac{79833600+3991680 \pi^{2} c_{1}+95040 \pi^{4} c_{2}+1320 \pi^{6} c_{3}+12 \pi^{8} c_{4}}{x^{13}} \\
\left.+\frac{1037836800+51891840 \pi^{2} c_{1}+1235520 \pi^{4} c_{2}+17160 \pi^{6} c_{3}+156 \pi^{8} c_{4}+\pi^{10} c_{5}}{x^{14}}+O\left(\frac{1}{x^{15}}\right)\right] \\
x=\frac{\pi}{\beta^{1 / 2}}
\end{array}
$$

$$
\begin{aligned}
\tau & =\int_{0}^{t} \frac{d t^{\prime}}{L^{2}\left(t^{\prime}\right)} \Rightarrow \\
t_{c}-t & =\int_{t}^{t_{c}} d t=\int_{\tau}^{\infty} L^{2} d \tau=\int_{\beta}^{0} L^{2} \frac{d \tau}{d \beta} d \beta \\
= & -\int_{\beta}^{0} L^{2} \frac{1}{\tilde{M}}\left[1+c_{1} \beta+c_{2} \beta^{2}+c_{3} \beta^{3}+c_{4} \beta^{4}+c_{5} \beta^{5}+O\left(\beta^{6}\right)\right] \exp \left[\frac{\pi}{\beta^{1 / 2}}\right] d \beta
\end{aligned}
$$

Using $\beta(L)$ from the inversion of previous expression and inverting that equation

$$
\Rightarrow
$$

Asymptotic of new basic ODE system

$$
\left\{\begin{array}{l}
\beta_{\tau}=-\tilde{M}\left[1+c_{1} \beta+c_{2} \beta^{2}+c_{3} \beta^{3}+c_{4} \beta^{4}+c_{5} \beta^{5}+O\left(\beta^{6}\right)\right]^{-1} \exp \left[-\frac{\pi}{\beta^{1 / 2}}\right] \\
L^{3} L_{t t}=-\beta \\
\tau=\int_{0}^{t} \frac{d t^{\prime}}{L^{2}\left(t^{\prime}\right)}
\end{array}\right.
$$

$$
\begin{aligned}
& L=\left(\frac{2 \pi\left(t_{c}-t\right)}{\ln A-4 \ln 3+4 \ln \ln A}\right)^{1 / 2}\left[1+\frac{2(1+4 \ln 3-4 \ln \ln A)}{(\ln A)^{2}}\right. \\
& +\frac{14-48 \ln \ln A+48(\ln \ln A)^{2}+48 \ln 3-96(\ln A)(\ln 3)+48(\ln 3)^{2}+\frac{1}{2} \pi^{2} c_{1}}{(\ln A)^{3}}+O\left(\frac{(\ln \ln A)^{3}}{(\ln A)^{4}}\right)
\end{aligned}
$$

$$
A=-3^{4} \frac{\tilde{M}}{2 \pi^{3}} \ln \left[\left[2 \pi\left(t_{c}-t\right)\right]^{1 / 2} \frac{e^{-a_{0}}}{L\left(z_{0}\right)}\right], \quad \tilde{M}=44.773 \ldots, \quad \beta_{0}=\beta\left(t_{0}\right), c_{1}=4.793 \ldots, c_{2}=52.37 \ldots
$$

$$
a_{0}=\frac{e^{\frac{\pi}{\sqrt{\beta_{0}}}}}{\tilde{M}}\left(\frac{2 \beta_{0}^{2}}{\pi}+\frac{8 \beta_{0}^{5 / 2}}{\pi^{2}}+\frac{2 \beta_{0}^{3}\left(20+\pi^{2} c_{1}\right)}{\pi^{3}}+\frac{12 \beta_{0}^{7 / 2}\left(20 \pi^{3}+\pi^{5} c_{1}\right)}{\pi^{7}}+\frac{2 \beta_{0}^{4}\left(840 \pi^{3}+42 \pi^{5} c_{1}+\pi^{7} c_{2}\right)}{\pi^{8}}\right)
$$

Simulations vs. analytic

$$
L=\left(\frac{2 \pi\left(t_{c}-t\right)}{\ln A-4 \ln 3+4 \ln \ln A}\right)^{1 / 2}
$$

Simulations vs next order analytic

$$
\begin{aligned}
& L=\left(\frac{2 \pi\left(t_{c}-t\right)}{\ln A-4 \ln 3+4 \ln \ln A}\right)^{1 / 2}\left[1+\frac{2(1+4 \ln 3-4 \ln \ln A)}{(\ln A)^{2}}\right. \\
& \left.+\frac{14-48 \ln \ln A+48(\ln \ln A)^{2}+48 \ln 3-96(\ln A)(\ln 3)+48(\ln 3)^{2}+\frac{1}{2} \pi^{2} c_{1}}{(\ln A)^{3}}+O\left(\frac{(\ln \ln A)^{3}}{(\ln A)^{4}}\right)\right]
\end{aligned}
$$

Simulations vs. analytic - larger interval starting from the initial Gaussian

$$
\begin{aligned}
& \text { In comparison, the standard log-log scaling } \quad L=\left(2 \pi \frac{t_{c}-t}{\ln \left|\ln \left(t_{c}-t\right)\right|}\right)^{1 / 2} \\
& \text { dominates only for amplitudes above }{ }^{1}
\end{aligned}
$$

${ }^{1}$ P.M. Lushnikov, S.A. Dyachenko and N. Vladimirova. Physical Review A, v. 88, 013845 (2013).

