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formation of singularity in a finite time

- Collapse: blow-up with the contraction of the 

spatial extent of solution to zero
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Multiple collapses (filamentation) of laser beam



Dynamics of  water waves of finite depth h
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- wave amplitude (envelope)  

- dispersion relation

Potential flow: 𝐯 = ∇Φ



Infinite depth h

Focusing 2D Nonlinear Schrödinger Equation (NLSE) 

Hyperbolic 2D NLSE1

1V.E. Zakharov (1968).



Finite depth h

Davey-Stewartson equation1,2 (DSE), also called by 

Benney-Roskes equation3,4

1A. Davey and K. Stewartson (1974).
2D.J. Benney and G.J. Roskes (1969). 
3V.D. Djordjevic and L.G. Redekopp (1977).
4M.J. Ablowitz and H. Segur (1979).

𝜱 results from the soft mode of the motion of the entire depth of fluid 



M.J. Ablowitz and H. Segur, JFM, 92, 691-715 (1979).



Davey-Stewartson Eq. in maximally rescaled coordinates:

Integrable cases (hyperbolic-elliptic and elliptic-hyperbolic):

DS I:

DS II:



Focus on elliptic-elliptic case:

The Hamiltonian

Virial theorem

Collapse for H<01-6

1M.J. Ablowitz and H. Segur, JFM, 92, 691-715 (1979).
2G.C. Papanicolaou, C. Sulem, P.L. Sulem, X.P. Wang, Physica D, 72, 61 (1994)
3M.J. Ablowitz, G. Biondini, S. Blair, Phys. Lett. A 236 (1997) 520.
4M.J. Ablowitz, G. Biondini, S. Blair, Phys. Rev. E 63 (2001) 605.
5M.J. Ablowitz, I. Bakirtas and B. Ilan (2005).
6M.J. Ablowitz, I. Bakirtas and B. Ilan (2005).



Critical NLSE collapse 

ground state soliton of NLSE

1M.J. Ablowitz, I. Bakirtas and B. Ilan (2005).

Critical collapse in Davey-Stewartson Eq (DSE):

ground state soliton of DSE



Collapses in critical NLSE and 

critical Keller-Segel equation (KSE)

2D NLSE

2D KSE



Simulations of Davey-Stewartson Eq (DSE) anisotropic

collapse:



Critical collapse in Davey-Stewartson Eq (DSE):

Blow up variables

and lens transform

Davey-Stewartson Eq. transforms into

where                            - adiabatically slow small parameter

and



Logarithmically slow functions

Why                            - adiabatically slow small parameter?

Then                                        is also adiabatically slow function of time



Looking for solution in the form

In adiabatic approximation of slow 



Tail minimization principle: during collapse dynamics 

system dynamically select collapsing solution with 

minimal tail amplitude

Then we look for V0 with the minimal tail



NLSE: In adiabatic approximation of slow       

minimizing tails by shooting method:
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Approximation through ground state soliton
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NLSE: Full solution V match the envelope of V0 of in the tail:



DSE: Full solution V match the envelope of V0 of in the tail

along both spatial directions

Time dependent numerics

shown in two directions



How V0 was obtained? (cannot use shooting in 2D elliptic problem) 

Use Newton-conjugate-gradient method (J. Yang , 2009)

combined with the correct choice of the asymptotic at infinity:

Here                                       for the infinite domain but instead cutoff at large 

distances for the finite 

domain as follows:

x,y



Numerics: solve by iterations

to satisfy the nonlinear system

using a linearization about a current iteration

with the linearization operator 

At each iteration step  the linear system

is solved for         by Conjugate gradient method (allows fast 

FFT-type solved with N Log N operations vs. regular solvers  



V0

p or q

DSE: In adiabatic approximation of slow          minimizing tails 

by Newton-conjugate-gradient method (J. Yang , 2009)

combined with the correct choice of the asymptotic at infinity by optimizing the 

cutoff distance of the potential V to decrease an artificial bump beyond oscillations:



NLSE: How to extract L(t) and       from simulations:

The analysis of Taylor series solution of

vs. time-dependent numerics at |𝒑|, |𝒒| ≪ 𝟏.

Use that 

Then       is found from the implicit equation

for each given            and 



Recovery of L(t) and b (t) from numerics:

L(t) and b (t)  are not universal but    

bt ( b ) is universal (different colors are different initial conditions):

𝟏/𝑳 ≃



Look at

as the Schrodinger equation with the effective potential U:

and complex eigenvalue E:

2 turning points      and     of WKB:



Matching of WKB solution to the right from the left of the left 

turning point to the asymptotic 

Here  𝑨𝑹 depends on spatial angle 𝚯 𝐚𝐬 𝐰𝐞𝐥𝐥 𝐚𝐬 𝐨𝐧 𝝂 𝐚𝐧𝐝 𝝁 as 

𝑨𝑹(𝚯) = 𝑨𝟎 + 𝑨𝟐cos (𝟐Θ) as follows from multipole expansion for 

Example:



Time dependent numerics

shown in two directions

Soliton solutions



Oscillating tail is given by the linear combination of confluent

hypergometric functions of the first and second kinds:

Here                                  is determined by the asymptotic

of ground state soliton

Matching asymptotics and using WKB give that

Asymptotics of complex solution



Introducing the number of particles to the left of the second turning point

and balancing the flux of particles to oscillating tails with the loss in 𝑵𝒃:

ODE system qualitatively similar to NLSE

Here

=-flux



Compare with old basic ODE system of the standard theory

Asymptotic solution near collapse time tc :

1G. Fraiman (1985); M. Landman, G. Papanicolaou, C. Sulem, and P. Sulem (1987);

A. Dyachenko, A. Newell, A. Pushkarev and V.E. Zakharov (1992); V. F. Malkin (1993).



Conclusion and future directions

- Critical collapse of DSE results in log-log scaling as in NLSE

- Tail minimization principle ensures matching of time dependent 

simulations with self-similar-like soliton solution with finite 𝛽

- Going beyond leading order scaling similar to NLSE is possible and 

will be done as the next step similar to Ref.1

1P.M. Lushnikov, S.A. Dyachenko and N. Vladimirova. Physical Review A, v. 88, 013845 (2013).



Returning to previous Figure

L(t) is not universal but    

bt ( b ) is universal:



Finding asymptotic of a new basic ODE system



Using            from the inversion of previous expression and

inverting that equation 



Asymptotic of new basic ODE system



Simulations vs. analytic



Simulations vs next order analytic 

Solid – numerics

Dashed - analytics
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In comparison, the standard log-log scaling 

dominates only for  amplitudes above1

100

10 Googol

10 =        10 =   Googolplex

1P.M. Lushnikov, S.A. Dyachenko and N. Vladimirova. Physical Review A, v. 88, 013845 (2013).


