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Introduction.

In this study, we grow turbulence from small initial noise within the 1D-NLSE equation with 
linear pumping term, 

until different levels of average intensity <|ψ|2>, and then turn off the pumping and study 
the resulting integrable turbulence.

How did we come to this problem?

A typical study of turbulence in an integrable system (a.k.a integrable turbulence) can be 
described as follows: (i) we take some integrable system, (ii) we take specific type of initial 
conditions with some randomness (e.g., modulationally unstable plane wave with random 
noise), and then (iii) we study evolution of statistics in time, averaging results over random 
realizations of initial conditions. 

Integrable systems allow conservation of infinite series of invariants, so that different 
types of initial conditions are characterized by different sets of integrals of motion and, 
during the evolution, demonstrate different statistical behavior even in the long time. 

In such studies, it is implicitly assumed that the initial conditions are somehow prepared 
by an external actor, that resembles a setting of a laboratory experiment. In nature we 
usually don’t have such situation. For instance, when we consider water waves in seas, 
these waves are “grown” by wind in the same system, where they travel later.
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Introduction.

In the present study, we mimic the latter approach: we temporary add a small pumping to 
an integrable model (making it nonintegrable), wait until the average intensity reaches a 
certain level, then switch off the pumping and examine the resulting integrable turbulence.

First, we believe that our approach has more resemblance with real physical systems. 

Second, one of the phenomena actively studied in integrable turbulence is the statistically 
stationary state, the existence of which was suggested by V.E. Zakharov in 2009 and later 
corroborated in numerical simulations for some initial conditions. In these simulations it 
was necessary to let the system evolve for a very long time, because the initial state is 
typically far from stationary. In contrast, our approach allows to move consequently 
through states that are stationary if the pumping is turned off. This setting resembles an 
ideal gas in a box, in which one molecule is added from time to time.



Formulation of the problem.

We study long-time statistics of solutions to the following dimensionless problem, 

where the function f(x) has unit average intensity and unit characteristic spatial scale 
δx=1, the coefficients A0 and Af are the initial and final mean amplitudes, and p0 is the 
renormalized pumping coefficient. The overline denotes spatial averaging,

over the simulation box -L/2 ≤ x < L/2, with periodic boundary; the period is considered to 
be large, L>>1.

Hence, our results may depend on: 
1) initial and final mean amplitudes A0 and Af, 
2) noise statistics given by the function f(x), 
3) pumping coefficient p0,
4) box size L.
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Formulation of the problem.

When the pumping is turned off, the equation of motion is the 1D-NLSE of the focusing 
type, which conserves an infinite series of invariants. The first three of them are wave 
action (in our notations equals the average intensity), momentum and total energy,

Here Hl is the kinetic energy, Hnl is the potential energy, k=2πm/L is the wavenumber, m
is integer and ψk is the Fourier-transformed wavefield.

When the pumping is on, the integrals evolve with time,
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Formulation of the problem.

Evolution of wave action N and momentum M is exponential and depends only on their 
initial values; the time for turning off the pumping is determined as t0 = ln[Af /A0]/p0.

Evolution of the total energy is less trivial. If the initial noise has small amplitude 
A0 << 1, then at the early growth stage the potential energy is small compared to the 
kinetic one, Hnl << Hl. Then, at this stage, the total energy grows exponentially, E ∞ 
exp(2p0t). At later stages, when the kinetic and potential energies become comparable, 
evolution of the total energy depends strongly on their interplay. The behavior of the next-
order integrals is expected to be even more complex.

Hence, after turning off the pumping, all realizations of the statistical ensemble will have 
equal values of wave action and momentum, N0exp(2p0t) and M0exp(2p0t), but should 
have different values of total energy and the next-order integrals of motion. 

In this study we focus on the adiabatic turbulence growth which goes through the 
consequent stationary states of the integrable turbulence.

We may achieve this when (i) the pumping is small, so that the motion is governed 
primarily by the terms of the 1D-NLSE, and (ii) the initial state is already close to 
stationary. The latter is possible if the initial wavefield is almost linear (e.g. small noise), 
because the linear turbulence is stationary. 



Simulation parameters.

Compare the characteristic time scales:

- Pumping: wave action evolves as N0exp(2p0t), hence tp = 1/p0.

- Dispersion: tl = l2, where l is the characteristic length scale of function ψ. Our 
experiments indicate that at the final time it is of the same order as at the initial time, i.e., 
l~1 and tl ~ 1 at all times.

- Nonlinearity: tnl = 1/N, where wave action N changes from A0
2 to Af

2.

Hence, the adiabatic turbulence growth should be implemented when (i) tl << tp and 
tnl << tp (evolution is governed primarily by terms of the 1D-NLSE) and (ii) A0

2 << 1 
(evolution starts from small noise, which represents almost linear, and therefore almost 
stationary state). The latter is satisfied for all times if

If the difference between p0 and 1 is larger enough in orders of magnitude, then the 
condition p0 << A0

2 is optional. Indeed, if we start from smaller initial noise, A0
2 << p0 or 

A0
2 ~ p0, then there is an intermediate time t* for which wave action satisfies the full 

condition, p0 << A0
2 exp(2p0t*) << 1. The equation of motion on the time interval [0, t*] is 

almost linear, so that nonlinear correlation is absent and the state at t* is still linear.
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Simulation parameters.

At the growth stage, it is also instructive to consider the equation of motion in the Fourier 
space,

This equation depends explicitly on the wavenumber k. For adiabatic turbulence growth, 
we need to ensure that the pumping term is much smaller than all other terms present in 
the equation, including for the smallest nonzero wavenumbers k. This leads to condition

where Δk=2π/L is distance between neighbor wavenumbers. 

Thus, the conditions for adiabatic turbulence growth are:

The third condition is much more strict than the second one, because we assume L>>1. 
Our experiments indicate that when these conditions are met, the turbulence indeed 
grows adiabatically.
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Numerical methods.

We use Runge-Kutta 4th order method on adaptive grid combined with Fourier 
interpolation between the grids. For more accurate simulation of the growth stage, we 
rewrite the 1D-NLSE for function ρ=exp(-p0t)ψ, eliminating the right-hand side of the 
equation. We have checked that, after turning off the pumping, the first ten integrals of 
motion of the 1D-NLSE are conserved by our numerical scheme up to the relative errors 
from 10-10 (the first three invariants) to 10-6 (the tenth invariant) orders.

As initial conditions, we take small noise, A0 << 1, with super-Gaussian Fourier spectrum,

where n is the exponent defining the shape of the Fourier spectrum, φk are random 
phases for each k and each realization of the initial conditions, Gn = π 21/n / Г(1+1/n) is 
the normalization constant such that f(x) have unit mean intensity, and Г is Gamma-
function. For each of the several experiments presented in the study, we perform 
simulation for an ensemble of several hundreds of random realizations of phases φk and 
then average the results over these realizations. Ensemble size is 200, and we have 
checked that larger ensemble sizes lead to the same statistical results.
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Numerical methods.

After turning off the pumping, we start measurement of the statistical functions, averaging 
them over the ensemble of random realizations of the initial noise. We examine the 
ensemble-averaged kinetic <Hl> and potential <Hnl> energies, the fourth-order moment of 
amplitude (a.k.a kurtosis) k4, the PDF P(I,t) of relative wave intensity I = |ψ|2/<|ψ|2>, the 
wave-action spectrum,

where Δk = 2π / L is the distance between neighbour wavenumbers, and the 
autocorrelation of the intensity,

In the latter relation, the overline denotes spatial averaging over the y coordinate. 
Note that, at x=0, the autocorrelation equals to the fourth-order moment, g2(0,t)=k4(t), and 
at |x| → ∞ it must approach to unity, g2(x,t) → 1. For the wave-action spectrum and the 
PDF, we use normalization conditions 

After turning off the pumping, we continue simulations for some time and check that we 
arrive to the stationary state by comparing statistical functions averaged over time 
intervals [0,20] (“short”) and [80,100] (“long”).
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Results: stationary state.

L = 128π, n = 2, A0 = 10-2, Af = 1, p0 = 10-5.



Results: adiabatic regime.

L = 128π, n = 2, A0 = 10-2, Af = 1, comparison of different pumping coefficients p0. The 
difference appears exactly when the criterion p0 << Δk2 ceases to work. Same for other L.



Results: adiabatic regime.

L = 128π, n = 2, Af = 1, p0 = 10-5, comparison of different initial amplitudes A0. 
No dependency for A0 ≤ 10-2. 



Results: adiabatic regime.

n = 2, A0 = 10-2, Af = 1, p0 = 10-5, comparison of different basin lengths L. 
No dependency for L ≤ 256π, i.e., until the criterion p0 << Δk2 works. 



Results: dependency on initial spectrum.

L = 128π, A0 = 10-2, Af = 1, p0 = 10-5, 
comparison of different exponents n defining 
the initial spectrum:
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Results: dependency on final amplitude Af.

L = 128π, n=2, A0 = 10-2, p0 = 10-5, comparison of different final amplitudes Af.



Results: wavefield.

L = 128π, n=2, A0 = 10-2, p0 = 10-5, Af = 1.
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n

kk ikx in

k

G
f x e

L

− + +=

| |1/2 .( ) ( )
n

kk ikx in

k

G
f x e

L

− + +=



Results: IST spectrum.

This work is done by Andrey Gelash and Rustam Mullyadzhanov.

L = 128π, n=2, A0 = 10-2, p0 = 10-5, Af = 1.



Results: IST spectrum.

This work is done by Andrey Gelash and Rustam Mullyadzhanov.

L = 128π, n=32, A0 = 10-2, p0 = 10-5, Af = 1.



Results: integrals of motion during the pumping 

stage.

Wave action. L = 128π, n=32, A0 = 10-2, p0 = 10-5, Af = 1.



Results: integrals of motion during the pumping 

stage.

Energy. L = 128π, n=32, A0 = 10-2, p0 = 10-5, Af = 1.



Results: integrals of motion during the pumping 

stage.

Ninth integral. L = 128π, n=32, A0 = 10-2, p0 = 10-5, Af = 1.



Conclusions.

We have studied adiabatic and non-adiabatic regimes of turbulence growth within the 1D-
NLSE model with linear pumping. 

The adiabatic regime is realized when the initial noise and pumping coefficient are small; 
the smallness of pumping coefficient includes condition on the simulation box (basin 
length). In the adiabatic regime, the final statistical state doesn’t depend on (i) the 
pumping coefficient, (ii) the amplitude of the initial noise and (iii) the basin length. The final 
and intermediate states in this regime are stationary states of the integrable turbulence.

Depending on the final average intensity level, we have arrived to weakly and strongly 
nonlinear states, and the latter states are characterized with a strongly heavy-tailed 
statistics. The limit is a soliton gas?

The non-adiabatic regime produces states that are characterized by more pronouncedly 
heavy-tailed statistics.

Implication: in large basins it is very difficult to achieve the adiabatic regime because of 
the condition p0 << Δk2; the non-adiabatic regime favors appearance of heavy tails in the 
distribution of intensity (rogue waves).
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