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ST ICTTEE
1D quintic NLSE.

Let's consider quintic defocusing Nonlinear Schrédinger Equation (qNLSE):
i 4 g — plul*u =0,

which is relevant in some cases:
@ NLSE can be considered as intensity correction to the dispersion relation: wy = k? + uul?
(cubic equation, four waves interaction).
@ In 1D case of NLSE (e.g. fiber optics) four waves interactions are non-resonant (no
description of wave turbulence in the fiber).
@ One needs to look for further term in intensity (nonresonant term can be eliminated by
canonical transformation): wy = k2 + uful*.
@ gNLSE results in 6-waves WKE, which is almost the same for Kelvin waves on superfluid
vortices at least on some scales (different dispersion relation wy ~ k2 log(x/k)).
Interaction of 3-into-3 waves, energy and number of particles are conserved. x € [0, L], periodic
boundary conditions, initial condition wug(x), 1+ > 0 (defocusing case).

A.O. Korotkevich, in collaboration with: Banks Dynamics of kinetic equation and qNLSE... Landau 2/28




Problem formulation. qNLSE in Fourier domain.

Fourier transformation.

The dynamics of the spectrum is studied by considering the evolution of the Fourier coefficients
ak(t): .
_ = i(kx—wyt)
u(x,t) = 7 zk: ar(t)e Kt), (1)

Here k is a wavenumber, which is an integer multiple of Ak =27 /L, wy = k? is the dispersion
relation for (2). The equation and the initial condition for (2) can be written as

a(t) =i > a1(t)ax(t)as(t)as(t)as(t)e
520 (2)
agk = cxe'k,
where dot over function means time derivative, Q = wy + w1 + Wk2 — Wiz — Wra — Wk5,

Sk:k+k1—|—k2—k3—k4—k5,anda;:ak,..
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Problem formulation. Weak nonlinearity condition.

Weak nonlinearity.

Initial data: ¢, = const ~ 1 in some range of scales [—Kkmax, kmax|, and yx — uniformly
distributed 1.1.D. random on [0,27). Let's fix kmax = % and require the L-norm of the initial
condition to be equal to one ||up||2 = 1. By the random phase assumption the L,,-norm of the
initial condition scales as ||ug||oo ~ 1/LY/2.

The two parameters present in the equation are the size of the domain L and the strength of
the nonlinearity p. It is convenient to express p in terms of L by writing ;1 = LP and
considering (L, p) as the two parameters present in our system. The weakly nonlinear regime,
under which wave turbulence theory has physical relevance, can be formulated as:

plluol| = p/L? = P2 < k2, or p<2. (3)

Here we used kmax = O(1).
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Wave Kinetic Equation. Finite period.

One can derive the wave kinetic equation (WKE) for equation (2), which describes dynamics of
the spectrum (|ax|?) = ny. Taking into account the random phase assumption, and letting
a9 = a(0) denote the initial value of a,, for a short time one gets

o 2
2(?) Z(|k|2+|1|2+| |
N (4)
2sm( )
B ‘a?1,|2 N |a§‘ | 0| ) |ak| ‘al‘ ‘ | %)2t s

where we have ignored higher order terms that decay to zero in the infinite domain limit.
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RN BT
Wave Kinetic Equation. Inifinite period.

Taking L to infinity, and taking a continuum limit, we obtain

t
o = [ sty (3 + o+
Tkin k k1
1 1 1 1 _
* ”22 ”23 ”24 ”25) 0 (k + kl * k2 (5)
—k3 — ks — ks) 0 (wik + wi1 + w2 — Wk3—
—Wk4 — wk5) dk]_dkzdkgdk4dk5

where n? = n,(0) and 7y, = wL*/(6u2) = mL*2P /6 is the kinetic time scale, the time at
which the WKE experiences an O(1) change.
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Wave Kinetic Equation.

The WKE above is valid for short periods of time At, if one takes the limit limit At — 0 the
following can be obtained:

oy 1 1 1 1 1 1
—— = [ Mmoo Ngangs | —+ —+ — — — — — — — | X
s Nk Nk N2 Nk3 Nka Nks

XO(k + ki + ko — k3 — kg — ks )O(wi + wi1 + W2 — Wk3 — Wka — Wks) X
Xdkldkgdk3dk4dk5 (6)
where for convenience, we have renormalized time by setting s = t/7xin.

Because both energy and number of particles are conserved, we have two fluxes: of energy and
number of particles. KZ-solutions are not realized (wrong signs of fluxes, Fjgrtjoft argument).

A.O. Korotkevich, in collaboration with: Banks Dynamics of kinetic equation and qNLSE... Landau 7/28



Numerical simulations. Wave Kinetic Equation assumptions.

Waves Kinetic Equation applicability. Problem formulation.

Because we performed rigorous derivation of WKE, the following questions naturally arise:

@ What choice of system parameters is relevant?
@ When we break WKE assumptions?
@ How boundary conditions influence the problem?

We shall perform simulations in both dynamical and WKE frameworks for the same initial
conditions.

A key requirement for validity of the WKE is the weak nonlinearity condition (3), which
imposes the inequality p < 2 upon taking L large.
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Waves Kinetic Equation applicability.
The condition p < 2 also arises in a key step in deriving (6) from (4):

- 20Q

s'”(%()zj) —— 27t5(9).
Since we will be considering times t = O(7x;,), we will require 74, > 1, which given the
definition of 74;,, in the infinite domain limit, again requires that we take p < 2. We note that
with p < 2 fixed, 74, > 1 also provides a practical lower bound on L for our simulations, which
degenerates at p = 2.
One have to prevent coherent structures from playing the dominant role in the dynamics of the
equation. This can be formulated as 74, < L2 log L, which gives p > 1. Here the RHS appears
from estimation of number of exact solutions of Diophantine equation Q = 0 on a set of
integers.
Therefore, in order to ensure that the gNLSE is well approximated by the WKE at the infinite
domain limit, we require

l<p<2. (7)
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Numerical simulations. Wave Kinetic Equation simulations details.

Initial conditions for WKE.

Equation (6) was solved numerically using an algorithm inspired by Webb-Resio-Tracy (Webb
1978, Tracy and Resio 1982) approach to simulation of WKE for gravity waves. In short, we
scan the 6D wavenumbers space and consider only those modes sixtets which satisfy resonant
conditions (both d-functions under the integral sign). As initial condition we considered ny = 1
in the interval k € [-1/2,1/2] and nyx = 0 everywhere else.

Number of harmonics in WKE simulations was 81. For every wavenumber we need to integrate
over 5-dimensional space with two bonds (resonant conditions), which results in 3-dimensional
space. So time of simulation growth cubically with number of harmonics.

Dynamical equation (QNLSE) was simulated for 1000 relizations of random phases and then
(|ak|?) compared with nj from WKE.
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Wave Kinetic Equation simulations details.
Dynamical equations and WKE. p = 1.1, L = 20.
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Figure: Comparison of averaged squared amplitudes of harmonics from dynamical simulations with
results of simulations in the framework of kinetic equation. Linear and logarithmic scales. Moment of

times=0.9, p=1.1, L =20.
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Numerical simulations. Wave Kinetic Equation simulations details.
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Figure: Comparison of averaged squared amplitudes of harmonics from dynamical simulations with
results of simulations in the framework of kinetic equation. Linear and logarithmic scales. Moment of

timet=s.7, p=11, L=20.
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Numerical simulations. Wave Kinetic Equation simulations details.
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Figure: Comparison of averaged squared amplitudes of harmonics from dynamical simulations with

results of simulations in the framework of kinetic equation. Linear and logarithmic scales. Moment of
time s =2.6, p=1.1, L = 20.
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Numerical simulations. Wave Kinetic Equation simulations details.

Comparison with dynamical equations. p = 1.1, L = 40.
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Figure: Comparison of averaged squared amplitudes of harmonics from dynamical simulations with
results of simulations in the framework of kinetic equation. Linear and logarithmic scales. Moment of
time s =0.9, p=1.1, L =40.
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Numerical simulations. Wave Kinetic Equation simulations details.
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Figure: Comparison of averaged squared amplitudes of harmonics from dynamical simulations with
results of simulations in the framework of kinetic equation. Linear and logarithmic scales. Moment of
time s =17, p=1.1, L = 40.
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Numerical simulations. Wave Kinetic Equation simulations details.
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Figure: Comparison of averaged squared amplitudes of harmonics from dynamical simulations with
results of simulations in the framework of kinetic equation. Linear and logarithmic scales. Moment of
time s =2.6, p=1.1, L = 40.
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Numerical simulations. Wave Kinetic Equation simulations details.

Different values of p.
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Figure: (Left panel) Comparison of averaged squared amplitudes of harmonics from simulations of
gNLSE and WKE at t = 74, or s = 1 for different values of parameter p. (Right Panel) Ly-norm of a
mismatch between qNLSE and WKE as a function of Ak ~ 27 /L for the case p=1.4 at s = 1.
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Numerical simulations. Wave Kinetic Equation simulations details.
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Figure: (Left panel) Comparison of averaged squared amplitudes of harmonics from simulations of
gNLSE and WKE at t = 27y, or s = 2 for different values of parameter p. (Right Panel) Ly-norm of a
mismatch between gNLSE and WKE as a function of Ak ~ 27 /L for the case p = 1.4 at s = 2.
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Numerical simulations. Wave Kinetic Equation simulations details.
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Figure: (Left panel) Comparison of averaged squared amplitudes of harmonics from simulations of
gNLSE and WKE at t = 37, or s = 3 for different values of parameter p. (Right Panel) Ly-norm of a
mismatch between gNLSE and WKE as a function of Ak ~ 27 /L for the case p = 1.4 at s = 3.
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Wave Kinetic Equation simulations details.
Compare results close to threshold of applicability p = 1.
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Figure: Solutions of gNLSE at different times for p = 0.9, slightly below the threshold in (7) and for
p = 1.1, slightly above the threshold in (7). In both cases L = 80. (Left Panel) Moment of time
t = Tkin or s = 1. (Right panel) Moment of time t = 274, or s = 2.
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Wave Kinetic Equation simulations details.
Check of the main assumption of WTT: (axa},) = nkd(k — k')
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Figure: Pair correlator (axaj,) computed for ensamble of 1000 realizations of initial coonditions for
qNLSE. Period of the system L = 200. The leftmost panel is the initial condition, then 7 =1, 7 = 2,
and 7 = 3. One can observe broadedning of the spectrum, but the §-function approximation is working
very well.
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Wave Kinetic Equation simulations details.
Check of the main assumption of WTT: (axa},) = nkd(k — k')
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Figure: The same as before, but the period of the system is L = 800. One can see the more narrow
correlation line, which means that its width is limited only by wavenumbers resolution Ak = 27/L.
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Wave Kinetic Equation simulations details.
Comparison with Dirichlet BCs. p=1.1, L = 19.
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Figure: Comparison of averaged squared amplitudes of harmonics from dynamical simulations with
results of simulations in the framework of kinetic equation. Linear and logarithmic scales. Moment of
times=1.0, p=1.1, L=19.
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Numerical simulations. Wave Kinetic Equation simulations details.
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Figure: Comparison of averaged squared amplitudes of harmonics from dynamical simulations with
results of simulations in the framework of kinetic equation. Linear and logarithmic scales. Moment of

time s =2.0, p=1.1, L = 19.
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Numerical simulations. Wave Kinetic Equation simulations details.
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Figure: Comparison of averaged squared amplitudes of harmonics from dynamical simulations with
results of simulations in the framework of kinetic equation. Linear and logarithmic scales. Moment of
time s =3.0, p=1.1, L =19.
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Wave Kinetic Equation simulations details.
Dirichlet BCs: (aka},) = nkd(k — k')
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Figure: Pair correlator (axaj,) computed for ensamble of 1000 realizations of initial coonditions for
qNLSE. Period of the system L = 19. The leftmost panel is the initial condition, then 7 =1, 7 =2,
and 7 = 3. No J-function approximation!
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Wave Kinetic Equation simulations details.
Dirichlet BCs: (aka},) = nkd(k — k')

Figure: Pair correlator (axaj,) computed for ensamble of 1000 realizations of initial coonditions for
gNLSE. Period of the system L = 19. The leftmost panel is the initial condition, then 7 =1, 7 =2,
and 7 = 3. No J-function approximation!
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Conclusion.

Results and future work.

Rigorous derivation of 6-waves WKE for periodic BCs was performed.

Applicability condition for WKE in periodic case were formulated.

Break up of WKE with the change of the parameters was demonstrated (too small L
results were omitted).

Break up of WKE for Dirichlet BCs.

Future work includes:

o Direct check of other assumptions of WKE derivation.
o Influence of different BCs.
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